

HIGHLIGHTS FROM DEVELOPMENT TRACK RECORD

MImAbs antibody packages reaching the clinics after transfer to Biotech/Pharma

Scientific and Technical Expertise Full Program Overview

MISSION: GENERATION AND SELECTION OF ANTIBODY LEADS COMPATIBLE WITH GMP & IVD REQUIREMENTS

A modular expert platform for antibody selection and characterization

Project analysis

mAb Generation

mAb Engineering

Bioproduction

Pharmacolgy

Scientific advice

Development Plan

Antigen or mRNA immunization

Single B cell screen on Beacon® platform

Hit validation

Humanization

Conjugation (ADC, ...)

Multispecific formats

Fc modifications

Biophysical characterization

Formulation

Up to 400 mg production

In vitro Pharmacology

- Cytotoxicity test on cell lines, PDXDC
- Functional tests

In vivo Pharmacology

- Efficacy in syngeneic & xenogeneic models
- Immunophenotyping

Business model

BUSINESS MODEL

MImAbs is seeking collaborations with biotechs / pharmas / academia

Fee-for-service collaboration

- Antibody campaign
- Antibody production, reformatting
- In vitro tests (ADCC, CDC, Immunopharmacology tests, custom tests...)
- In vivo tests, PK/PD, efficacy, immune profiling.
- Reserved and dedicated prioritized resources
- Definition of early target validation workplan (immunogen design, specifications of mAbs (naked, ADC, bispecifics), in vitro and in vivo POC design (KI models))
- Scientific advice on antibody generation and characterization strategies

In both scenarios MImAbs does not retain any IP rights

- All IP generated during the collaboration belongs to Client
- MlmAbs has no proprietary drug-discovery program

BUSINESS MODEL

MImAbs is seeking collaborations with biotechs / pharmas / academia

- Antibody expertise and know-how
- Flexibility personalized support
- Operational capabilities
- Integrated or specific projects

MlmAbs

www.mimabs.org

117 Avenue de Luminy

CS 10951

F13288 Marseille Cedex 9

Technical slides

Step 1 - Project analysis

Design of a comprehensive development plan

Generation of mAbs

- Design and production of immunogen (soluble proteins, transfectants, peptides...)
- mRNA for difficult-to-express targets (proprietary immunization protocols with several track records of success with GPCR)
- Generation of screening tools (transfectant human / mice / cyno for cross-reactivity)
- Choice of animal strains: mice, KO mice for target if available to diversify epitope and allow mouse cross-reactivity, genetically engineered mice for direct fully human mAb obtention (Alloy Tx GK mice), rabbit

Format of antibodies

- Full range of mice and human isotypes
- Blocking, ADCC, ADCC enhanced Fc mutations
- Compare advanced formats (ADC, bispecifics, nanobodies...)

Design of preclinical models

- KI mice (18 months to generate mice colonies for pharmacology evaluation, via JCD)
- Surrogate strategy (necessitates both human and mice immunization campaigns)

Generate comprehensive work program (Gantt and associated resources)

- Definition of go-no-go and milestones
- Definition of reporting schedules
- Resources are followed and adjusted depending on results/priorities

Immunization

On chip single cell screening, amplification, sequencing, in silico analysis, selection of hits to produce

BALB/c model - KO model - C57BI/6

Serum tested by ELISA or FACS

8 weeks

Beacon® screen, export and sequencing

Bioinformatic hit selection step

Beacon® system and OptoSelect™ chip

Clone 10K single B cells /chip into NanoPen™

Cell characterization within minutes

In silico analysis CDR liabilities / CDR patches

2 - 3 weeks

Cloning

Production • Purification

EC₅₀ ◆ Affinity ◆ Functional

Selected hits

Robotized production of hits 100 µg level (up to 100 hits), or mg level if lower numbers (< 50 hits)

Selected Hits

 Functional characterization (affinity, in vitro pharmacological profiling ADCC, blocking direct lysis, see pharmaco test)

- Humanization of rodent mAbs; In silico analysis of mAb behaviour and sequence liabilities.
 - Antibody modelling, CDR grafting
 - In silico analysis of sequence liabilities on fully human or along humanization process:
 propose variants to decrease identified liabilities
- Biochemical characterization
 - Purity, integrity, aggregate content (SDS, SEC HPLC)
 - Identity (Mass spectrometry)
 - Endotoxin (LAL test)
- Pre-CMC behaviour as naked and ADC formats
 - Pre-formulation (buffer, polysorbate, sucrose)
 - HIC (ADC)
 - NanoDSF studies
 - Stress tests (pH, freeze thaw cycles)
 - Accelerated stability studies of different variants

Modelization and analysis of sequence liabilities (N and W) of a lead candidate (MOE software)

Step 3 - mAb Engineering / ADC

Generation of several validation packages for different candidate/toxin leading to pharma development

- Generation of ADC: technology agnostic
 - Various technologies of coupling (random Cys-coupling, site directed (engineered Cys-coupling, enzymatic coupling))
 - Varous Toxins and linker validated in the clinics
 - Goal is to select best options (coupling, linker payload) adapted to a given target
- Back and forth dialog between biochemistry characterization and pharmacological evaluation
 - Selected mAbs coupled with different toxins evaluated for in vitro pharmacological activity
 - Xenogeneic or syngeneic (human target transfected murine cancer cell lines) models to evaluate efficacy
 - MTD evaluation in mice
- Pre-CMC package: production to different scales (mg to hundreds of mg scale)
 - Biochemical characterization (high level quality controls)
 - Accelerated stabilty studies
 - Ex-vivo and in vivo stability: Extraction from sera, followed by LC-MS analysis
- To date, up to 300 mg scale compatible with MTD determination (mice, rat) or acute toxicology in monkeys
 - High level quality controls, stability studies, pre-CMC packages
- Possibility to generate KI mouse models (JC Discovery) to evaluate therapeutic window

Step 3 - mAb Engineering / ADC

Examples of Toxins and DAR ratio commonly used at MImAbs

Cleavable PBD

Step 3 - mAb Engineering / ADC (cont'd)

List of toxin available at MImAbs

Toxin Class	conjugation chemistry	payload reference
Auristatin	Click Reactive	DBCO-PEG4-vc-PAB-MMAE
Auristatin	Click Reactive	Undisclosed
Auristatin	Click Reactive	Azido-MMAE
Auristatin	Click Reactive	DBCO-PEG4-MMAF
Auristatin	Click Reactive	DBCO-PEG4-vc-PAB-MMAF
Exatecan & derivatives	Click Reactive	DBCO-PEG4-GGFG-DX8951 (Deruxtecan)
Exatecan & derivatives	Click Reactive	BCN-PEG4-GGFG-DX8951 (Deruxtecan)
Pyrolobenzodiazepine (PBD)	Click Reactive	DBCO-PEG4-VA-PBD (Talirine)
Pyrolobenzodiazepine (PBD)	Click Reactive	azido-Tesirine
Pyrolobenzodiazepine (PBD)	Click Reactive	Undisclosed
SN38	Click Reactive	Undisclosed
Amanitin	Thiol Reactive	MC-cleavable-linker-α-amanitin
Auristatin	Thiol Reactive	MC-vc-PAB-MMAE
Auristatin	Thiol Reactive	MC-vc-PAB-MMAF
Exatecan & derivatives	Thiol Reactive	MC-GGFG-DX8951 (Deruxtecan)
Exatecan & derivatives	Thiol Reactive	Mal-bGLU-Exatecan-PSAR (Mablink Biosciences)
Pyrolobenzodiazepine (PBD)	Thiol Reactive	MA-PEG8-VA-PAB-SG3199 (Talirine)
SN38	Thiol Reactive	CL2A-SN 38
Exatecan & derivatives	Thiol Reactive	MC-VA-PAB-Exatecan
Exatecan & derivatives	Thiol Reactive	Mal-PEG8-VA-PAB-Exatecan
Exatecan & derivatives	Thiol Reactive	Mal-bGLU-PAB-Exatecan
Exatecan & derivatives	Thiol Reactive	Mal-spacer-bGLU-Exatecan
Exatecan & derivatives	Thiol Reactive	MC-PEG-GGFG-Exatecan
Exatecan & derivatives	Thiol Reactive	undisclosed
Exatecan & derivatives	Thiol Reactive	undisclosed
Exatecan & derivatives	Thiol Reactive	undisclosed

Step 3 - mAb Engineering / bispecific mAb

Generation of several validation packages for different bispecific leading to pharma development

- Knob in the hole format (off patent)
 - Knob in the hole mutations combined with crossmab
 - Set up of purification protocol to isolate bispecific from byproducts
- Arm exchange format (Genmab technology)
 - Genmab mutations and production of separated mAbs
 - Arm exchange protocol
 - Set up of purification protocol to isolate bispecific from byproducts
- Production scale and QC compatible with pharmacology in mice (KI models) or acute toxicology in monkeys
 - High level quality controls, determination of true bispecific format over parent antibodies or byproducts
- Possibility to generate KI mouse models (JC Discovery) to evaluate therapeutic window
 - HCD3ε KI mice available at MImAbs (validated with blinatumomab)

Step 4 - Bioproduction

Naked, Antibody drug conjugates, bispecifics routinely produced to hundreds of mg

- High titer expression vectors for HEK and CHO
- Production level compatible with in vitro and most in vivo experiments in mice

- Second purification step and polishing step if needed (IEX, SEC, HIC)
- Quality controls at pharma standards for all formats (SDS, SEC, MS ...)

- Although not GMP, quality fulfill industry requirements
- Size of batches compatible with MTD determination in mice and rats, or preliminary tox studies in NHP

Cytotoxicity: Direct, ADCC, ADCP, CDC

- Direct (IncuCyte, ATP, to test ADCs), (on CDX and PDXderived in vitro models transferred from Xentech)
- Mediated by effector cells (luciferase or calcein for ADCC, Tor NK-DCC with naked or bispecific Abs)
- Indirect flow cytometry (CD107) on effectors

Immune Modulation (mice and human)

- T cell functional assay, NK functional assay
- Primary or secondary MLR
- In vitro DC differentiation
- Cytometry read-outs (surface/intra cellular stainings, cell sorting)
- (ELISA, Luminex) read outs for cytokine production

Step 5 - Immunopharmacology / in vivo (mice)

Naked, Antibody drug conjugates, bispecifics in syngenic, KI or xenogenic models

Antibody bioanalysis

- PK parameters (including DAR follow up for ADC by MS)
- Pharmacodynamy parameters (receptor saturation by flow)

Safety parameters

- Weight
- Health status
- Blood counts

Efficacy readouts

- Survival
- Tumor load (caliper or bioluminescence),
- Inflammatory response, immuno-profiling (advanced with JC Discovery)

In vivo models

- Syngeneic models (surrogate, crossreactive mAbs): MC38, CT26, B16F10, EMT6...
- Xenogeneic models (large panel of different cell lines from different histologies)
- KI models (can be newly generated with JC Discovery)
- Large panel of additional CDX and PDX with Xentech & Urosphere
 - Efficacy in Humanized mice with PBMC or CD34 with JC Discovery and/or Xentech

